Open Source Risk Scorecard

Priority insights and actions to reduce open source risks
due to security vulnerability, IP / licensing, and obsolescence exposures

Sample Report

Challenge

Over 70% of applications utilize open source components which introduces legal, security, and obsolescence
risks.* However, traditional approaches to implementing Software Composition Analysis (SCA) are falling short:

Slow and cumbersome rollout
Increasingly complicated and expensive

Compounding Developer “Alert Fatigue”

Ultimately, open source risks can get lost in the noise and ignored. But, there is a smarter approach to SCA...

CAST Highlight acts as an Open Source ‘command center’ across all applications, without disrupting
developers.

C/\SI- *Gartner

Scope

This document is a sample of automatically generated SCA intelligence for a portfolio of 17 applications.

Key insights in this report include:

« Specific recommendations on how to reduce open source security, legal, and obsolescence risks
- Additional recommendations on how to:

— optimize software maintenance costs, application resiliency, and tech debt
— modernize each application to be cloud native

— make software greener

CAST Highlight was used to produce the intelligence in a few hours by automatically understanding the source
code and capturing qualitative information via a built-in survey capability.

CNST

http://www.castsoftware.com/highlight
https://www.castsoftware.com/get-demo-of-cast-software-intelligence?utm_page=https://www.castsoftware.com/highlight

Agenda

Executive Summary page 3

Portfolio Snapshot page 5

Software Composition Analysis page 8 | ol

Software Health page 16 = | o e

Cloud Maturity page 15 T T 194 2

Green Impact page 34 .

Why CAST Highlight? page 41 ” == - = =F =
Appendix page 43 - = = - |

« Data Collection Process

e Metrics & Definitions

Portfolio snapshot

Application portfolio snapshot

17 10 5.1m 527

applications technologies lines of code open-source components
(programming languages)

- & Q 4

Software Health CloudReady Open Source Safety Green Impact

Programming best practices that increase resiliency. improve agility Software & Organization characteristics to speed PaaS migration Programming practices and engineering prinaples that make
and reduce complexity. software more ervironment-friendly

53.8 5/7.0 70.9 7124

WORST INDUSTRY BEST WORST INDUSTRY 5 WORS INDUSTRY BEST AVERAGE

¥ 289 | __Exk?! il 020 346 61.68 35,2 73.68 100.0 724

A portfolio snapshot provides a summary of the
portfolio and top line metrics for all applications.
(All metrics are defined in the appendix.)

Application portfolio snapshot

Technology Size (LOC) Resiliency Elegance

Java 2.5M 53.44 36.88
C# 1.6M

Cobol 712K

VB 202K

C/C++ 104K

Javascript 26k 53.90

Python 20k

Ksh 11k

JSP 6k

T/SQL

The portfolio snapshot also includes the portfolio demographics broken
down by technology and health scores (resiliency, agility, elegance).

Software Composition Analysis

Software Composition Analysis Section

This section of the report contains key insights generated by CAST Highlight on the Software
Composition (open source risks) of applications that should addressed and monitored regularly
including:

Security vulnerabilities to be addressed
Risky open source licenses that create potential legal exposures
Summarized action plan for the application portfolio

Software Composition Analysis Overview

K © D,

Check Third-Party Control Open Source Reduce
Vulnerabilities License Compliance Technology Obsolescence

Open source is one of Open source licensing can Open source components can
the major entry points for be complex and confusing. become out of date or
hackers. It is critical to Visibility on the licenses unsupported resulting in
identify if the third-party used by open source operational risks and outages.
components in use components is required to These out of date components
contain security detect any restrictive must be detected and replaced
vulnerabilities. license compliance issues. with supported components.

Security Vulnerabilities Overview

Th|rd -Party Component Vulnerabilities
Portfolio Insights & Top 5

Business Impact Possible Vulnerabilities

hadoop 85.3 mOmll 34m2 6

Grogu 1.6 E1lm0r2m0 O

Hades 68.3 mOm10-3m0 3

GCP-Client 56.9 m4m8nl7ml 4

Loki 49.5 m29m50n26m3 1
_—

The number and criticality of open source security

CAST vulnerabilities are identified across the portfolio.

Detall

& Vulnerabilities

Application Components

Hadoop cxf-rt-transports-http-jetty 3.0.3, slf4j-api 1.7.7, jsch 0.1.42

Grogu Microsoft.Practices.Enterpriselibrary.Logging 4.1.0.0, Microsoft.Practices.EnterpriseLibrary.Common 4.1.0.0
Hades oxf-rt-frontend-jaxws 2.7.5

GCP-Client minimatch 3.0.0, useragent 2.1.12, gs 2.3.3, decamelize 1.1.1, parsejson 0.0.3, hapi 15.x.x,

tomcat-embed-core 7.0.73, slf4j-api 1.7.7, cxf-rt-frontend-jaxws 2.7.12, is-my-json-valid 2.12.0, ua-parser-js 0.7.12,
marked 0.3.6, minimatch 3.0.0, useragent 2.1.11, jguery 1.7.2, hibernate-validator 4.2.0.Final,

Loki

openjpa-persistence-jdbc 2.1.1, commons-fileupload 1.2.1, jackson-databind 2.5.3, dom4j 1.6.1, jsoup 1.8.1, derby

10.1.1.0 ... ‘

Specific open-source components with
CNAST vulnerabilities in each application are identified.

Other applications

https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3aapache%3acxf%3a3.0.3
https://nvd.nist.gov/vuln/detail/CVE-2018-8088
https://nvd.nist.gov/vuln/detail/CVE-2016-5725
https://nvd.nist.gov/vuln/detail/CVE-2009-3275
https://nvd.nist.gov/vuln/detail/CVE-2009-3275
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3aapache%3acxf%3a2.7.5
https://nvd.nist.gov/vuln/detail/CVE-2016-10540
https://nvd.nist.gov/vuln/detail/CVE-2017-16030
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2017-1000048
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2017-16023
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2017-16113
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2017-16013
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3aapache%3atomcat%3a7.0.73
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2018-8088
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3aapache%3acxf%3a2.7.12
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-2537
https://nvd.nist.gov/vuln/detail/CVE-2017-16086
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2017-16114
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2016-10540
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2017-16030
https://www.cvedetails.com/vulnerability-list/vendor_id-6538/product_id-11031/version_id-235565/Jquery-Jquery-1.7.2.html
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2014-3558
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2013-1768
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3aapache%3acommons_fileupload%3a1.2.1
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3afasterxml%3ajackson-databind%3a2.5.3
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3adom4j_project%3adom4j%3a1.6.1
https://nvd.nist.gov/vuln/detail/CVE-2015-6748
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3aapache%3aderby%3a10.1.1.0
https://nvd.nist.gov/vuln/search/results?form_type=Advanced&cves=on&cpe_version=cpe%3a%2fa%3aapache%3aderby%3a10.1.1.0

License Risk Overview

Third-Party Component License Risk
Portfolio Insights & Top 5

coﬁglns HIGzHRSISK MEigISK g‘W1R§< UN!E%ED
hadoop 85.3 w17 16m 181 w2
Mando 895.3 ml:0mOm1
Grogu /1.6 w0 0m2m0
Hades 68.3 m1l-16m106m4
roslyn 63.2 m0 Om2=0

The number and risk levels of open source licenses are

CAST identified across the portfolio.

License Risk Detall

« License Risk

Application

3rd-Party Components

Licenses

Hadoop

Mando

Grogu

Hades

Roslyn

12

379

32

MIT License (2), Apache 2.0 (1), BSD-3 New

Apache 2.0 (3), GNU Affero GPL 3.0 (2)

MIT License (2), ISC License (1)

MIT License (358), ISC License (39), Apache 2.0 (16),
GPL3(1),BSD 3 (1)

MIT License (2), Apache 2.0 (1), GNU GPL 3 (4)

, BSD 2 (14), GNU Affero

Applications that use open source components
with risky licenses are highlighted.

Software Composition Recommendations

Hadoop: Upgrade jsh component to latest version to reduce critical vulnerability risk

Hades:
« Upgrade hibernate component to latest version to reduce critical vulnerability risk
« Replace component that uses the GNU GPL license to avoid copyleft licensing risk

Mando: Replace component that uses the GNU GPL license to avoid copyleft licensing risk
Roslyn: Replace component that uses the GNU GPL license to avoid copyleft licensing risk

Additional recommendations:
« Continuously monitor Health of each application to understand opportunities to improve resiliency and agility.
« Analyze Cloud Maturity of each application to modernize the portfolio.
« Investigate Green Impact of each application to identify opportunities for reducing energy consumption and carbon emissions.

Specific recommendations on how to reduce open source
vulnerability and license risk are summarized.

Software Health

Software Health section

This section of the report contains key insights generated by CAST Highlight on the Software Health
of applications that should be continuously optimized including:

« Applications that are business critical and have low Resiliency

« Specific improvement opportunities within the code to improve Resiliency

- Applications where software maintenance costs and resource allocation can be optimized
« Summarized action plan for the application portfolio

Software Resiliency vs Business Impact

100

. DANGER ZONE 3 f CONFIDENCE ZONE
a0 l?an
BS ! |
80
75
- \
® A
= S I"',
E |
7] |
17 - y
e /
g 55 sl"r . /
m 1 |
. Budggt
starlord MultiCloud
45 \) -
Product Management
40
= Unicorn
30
25 \
20
15
35.0 40.0 450 50.0 55.0 60.0 B5.0 70.0 75.0 80.0 85.0 0.0 95.0
Software Resiliency

DANGER ZONE

Hadoop Loki
Hades IMDB
Grogu Shopizer
GCP-Client
CONFIDENCE ZONE
MultiCloud Product Management
Roslyn

&

VULNERABILITIES

Loki
Hadoop

Mando
GCP-Client

Detected Common Vulnerabilities from Software
Composition Analysis

Application Health insights
(such as Resiliency) are

analyzed to ensure
unhealthy applications are
improved

18

Software Resiliency for Loki Application

14.6 pascrp | |

© software Reslliency

N @Improvement Candidates O Level jz **CodeSize
élmprovementOpportunities Frequency |z R Benchmark

Avoid Implied Typecasting. @ E

c2runtime js:root 9k

: o Software Resiliency : Low 3k
c2runtime.js::anony 1oon LOC 15
96.52 % of LOC
4] 19.05 % of Files

The code contains too many redundant object members access. Use .1 20T
- Q2runtime.jszanony.. . __ . ____ 27

intermediate variables to factorize and improve performance. (2] 1k

Avoid literal numbers (i.e. Magic numbers are not so magic). @ .14-24 % 102

index (2).html::animate_paint

The code contains too many double quote strings. Single quotes are
prefered. @

l9‘38 % Atd index.html::root a5

cZruntime.js::anonymous_2_at_line_20 828

Avoid using 'this' unless it points to a newly created object (and tested). (2] l9‘03 % 4t

c2runtime.js::anonymous_4671_at_line_7580 592

The code contains too many "new Array()" pattern. Prefer litteral syntax for

straightforward ceding. Using Array constructor is ambigous because
index (2).html::get_alfa

Semicolons seem to be missing too frequently. @ foss% 4t app.jsiroot 73
=

|4.17%

arguments have not the same meaning in the case there is a single one (size
of the array) or severall (list of element initialization).
V) ¢ -0 index (2).html::button_refresh m 13

The code contains deep functions. @ |3‘65 % 4th
index (2).html::paint m 35

index (2).html::RGB m 8
c2webappstart.js:root m 33

The code contains too many switch cases with missing ending breaks. @ ‘1-39 % st

ll

The code contains multiline strings. Use string concatenation instead. @ ‘1-39 % st

Unhealthy applications are analyzed at a deeper level to

understand specific code-level improvement opportunities.

Portfolio Advisor for Software Maintenance

@ Portfolio Advisor for Software Maintenance The Portfolio
S e t “ Advisor for
. A _ Software
. 0., : Maintenance
O O ‘. automatically
e Q9 recommends
actions to take
e & ..w on specific

applications to
optimize software
maintenance
costs and
efficiency such
as applications
with too many or
too few
resources. It also
identifies
opportunities to
develop team
skills and reduce
turnover.

3 3 2

Invest Resources Reallocate Resources Develop Team Skills Get Deeper Software
Intelligence

s that would benefit from more Less business criticsl spplicstions that sre nesitny snd may have
ring to the COCOMO Il model (sccarding ta the
COCOMO Il model racammendad maintanance sffert).

@ See Applications

Software Maintenance Optimization

. Recorded Maintenance Effort

Recommended Maintenance Effort

Starlord

Likely too few resources
on these applications.

UNTCOT T s

Loki pe—

Likely too many
resources on these
applications.

Mando

Groot 1

Grogu |

Software maintenance effort recommendations are based on comparing the actual

(recorded) maintenance effort with the recommended maintenance effort
(calculated automatically based on the COCOMO Il industry standard model).

Software Health | Recommendations

Some applications have Resiliency scores that are severely low. Code alerts should be remediated to
improve performance and reduce production outage risk:

« Hades
« Loki
« Grogu

Security Vulnerabilities were identified in a few applications and a deeper Software Composition Analysis

should be performed to investigate the open source components in these applications further:
« Loki

Hadoop

Mando

GCP-Client

Software Maintenance costs and efficiency can be optimized with the following actions:
« |nvest resources — Starlord, Unicorn, LokKi
« Reallocate resources — Mando, Groot, Grogu

» Develop team skills — Quill, Hadoop, Hades Additional recommendations on: how to improve
» Reduce Turnover — GCP-Client, MultiCloud Software Health issues, potential security

vulnerabilities to investigate, and software
maintenance optimization actions are summarized.

CNST

Cloud Maturity

Cloud Maturity Section

This section of the report contains key insights generated by CAST Highlight on the Cloud Maturity of
applications including:

- Recommended modernization approaches for each application (Refactor, Rearchitect, Rebuild)

- Blockers to PaaS deployment, estimated effort to remove them, and the required code changes

-« Recommended cloud native services that applications can adopt when deployed in a PaaS environment

« Summarized action plan for the application portfolio

Portfolio Advisor for Cloud

1 BsofwareHeaith- 4= @ Cloudready- © ocouderfort- | @

Rearchitect (1) 100.0

MultiCloud The Portfolio

RN . |. Advisor for Cloud
‘ . ‘ = automatically

shopizer Seg meﬂtS eaCh

foslyn arior lando
.. “ e hades |, . application and

foware Healtt

SR B (. recommends the
w00 " Loki @cassandra . 0 o
.‘ “ o e Riient ideal modernization
@ Rehost (0) @ Refactor (9) Rearchitect (1) @ Rebuild (5) @ Retire (2) 30.0 Gr@ot Q@Ill approach based On
fact-based
technical
o0 characteristics (via

o automated source

code analysis) and

qualitative criteria

such as business

impact (captured
via survey).

9 1 5 2
Refactor Rearchitect Rebuild Retire

A recommendation to dramatically
modify the application code thereby
altering the architecture to improve the
health of the application and enable it
to be migrated to the cloud using
Platform as a Service (P3aS) or deployed
serveriess using Function as 3 Service
(F3as)

Portfolio Advisor for Cloud

o —
=
Name - ent <[> Loc i Files BI § Total FTE & CloudReady 2 Roadblocks @ Est. Effort i oss 0 sr ¥ SA = s

B H Segm

roshyn 1.38m LOC T4k 63 65.00 FTE 48.01 13260 374.78 person-day F6.50 57.35

1y o p y

cassandra Retire v & 4ossklocC 273k 30 5.00 FIE 58.33 person-day
hadoop Rearchitec v & | 13mLOC 9.6k B8 30.00 FTE [9709 | 338.13 person-day [603 | Ex
GCP-Client Rebuild v | € 25457k LOC 1.04k 57 25.00 FTE 6.89 person-day m
Hades Rebuild v € 788.06kLOC 227k B8 35.00 FTE 2457 30421 2.81k person-day Ex 2704
shopizer Refactor v & | 26.08KL0C 430 B8 45.00 FTE 1.45 person-day
Unicarn Refactor v & 427kLOC 34 B8 50.00 FTE 7632 = | 0.22 person-day 7317 [5925 | E
Product Management Refactor v @ 42810C 3 . 25.00 FTE a 0.16 person-day 1 m
MDB Refactor v | GF | 483L0C 1 E 50.00 FTE m n 0.00 person-day m
Budget Refactor v & T0lOC 5 52 50.00 FTE 0.03 person-day m £0.29
MultiCloud Refactor v € 3510C 7 15.00 FTE o] 0.00 person-day
Loki Rebuild v | @ 40584kL0C 2.74k 45.00 FTE 58.33 persan-day [2955 |
Grogu Repuild v | @ 22387k LOC 1.78k 50.00 FTE 4329 [2 | 10.95 persan-day 4409
Groot Retire v € s355kL0C 287 31 15.00 FTE 4322 m 12.68 person-day 61.81 3246
Mando Refsctor v &) | 10183k LOC 1.08k B8 45.00 FTE Ex3 2.24 person-day [5601 | [63.09 |
Quill Rebuild v | € | 63.55kLOC 287 15.00 FTE @ 13.46 person-day £1.81 @
Starlord Refactor v | @ 10133k LOC 1.08k 45.00 FTE 2.24 person-day [5601 | E3

Additional statistics are provided for each
CAST application to further refine the roadmap.

Top Blockers & Boosters

Below are the top three Boosters and Blockers to cloud native
found across the portfolio.

N

BR Boosters

Application Logs : Corrdct usage of Logging ©

Application Settings Confguration : Using ConfigurationManager @

sing MongoDB database @

ar Blockers

| Execution Environment : Using file system @

Exeoution Emvironmenit ;

Persistent Files : Perform File Manipulation @

Persistent Files - Using stateful session (Serviet) @

CNST

Here are the top three
PaaS Blockers and
Boosters observed across
the entire portfolio.

Blockers are code level
issues that need to be
addressed before the
application can adopt
cloud native services.
These are described in
more detail on the
following pages.

Blocker Detail: Using Stateful Sessions

" ® X

& cioud Requirement 'ﬁ.‘r‘ Impact Criticality Contribution Roadblocks
Persistent Files : Using stateful session (Serviet) @ @ High +10

Rationale and Recommendation

For modern applications running in the Cloud, it is not recommended to be stateful, especially for sessions as they’re not
scalable, and are generally harder to replicate and fix bugs (server-side). Ideally, stateful sessions should be replaced by
stateless and client-side mechanisms such as cookies, client cache (e.g. Redis, memcache...) or in an external cloud-

based storage. This is an important architectural constraint of microservices-style applications, as it enables resiliency,
elasticity, and allows any available service instance to execute any task.

Criticality e
\path\to\filel
\path\to\file3
Migration Impacts Searched Code Patterns Each Blocker is.
described in detall
import javax.servliet.http.HttpSession: adV|Ce

and getSessicn() .sethttribute { Or getSession () .putValue |

CNST

Blocker Detail: Use of File System

y i -

& cioud Requirement 'i‘r‘ Impact Criticality Contribution Roadblocks
Execution Environment : Use file system @ @ Medium a

Rationale and Recommendation
Cloud applications should not assume the local file system is accessible, as the directory structure might be different

from a traditional desktop or server machine and/or the Cloud application may not have sufficient rights to access the

local file system. Instead, use relative paths to application resources
(e.q. ../../reporting/reportBuilder.xml). Depending on your application context and the Cloud platform where it is

deployed, you could also consider using functions or classes like to dynamically resolve file paths.
T Files li
Criticality B Flles kst
\path\to\filel
\path\to\file3
- - ; Each Blocker is
Migration Impacts Searched Code Patterns _) _
_ _ . described in detall
Look in source code for strings that contain OS-specific paths: including remediation
e C:\, D:\ .. z:\for Windlowa platforms advice.
« /var, /user, /etc for Linux platforms

CNST

https://docs.microsoft.com/en-us/previous-versions/azure/reference/ee758617(v=azure.100)

Blocker Detail: Perform File Manipulation

by & -

& cioud Requirement 't"r' Impact Criticality Contribution Roadblocks
Persistent Files : Perform File Manipulation @ @ Medium

Rationale and Recommendation

Manipulating local files requires specific permissions and usually assumes the file will be persisted over time. In the
Cloud, because the underlying infrastructure can be moved or removed, it is not possible to make such assumptions.
Instead of using the file system, store your temporary information in a dedicated Cloud-based storage or in a NoSQL

database.
Criticality 1 Flles list
\path\to\filel
\path\to\file3
Migration Impacts Searched Code Patterns Each Blocker is

described in detail

import org.apache.commons.ic.FileUtils; Or import java.ioc.File; adV|Ce

and moweFile (}Or forceDelete () Ordeletefuitely() oOf cepyFile() Orwritel|

CNST

Cloud Boosters & Blockers for Roslyn Application

W roslyn

48.0 29.5 66.5 1.7 A17.2 13260

+0.0% +0.0 % +0.0% +0.0 % +0.0 % +0.0 %
& CloudReady & CloudReady Survey 88 CloudReady Scan 88 Boosters 88 Blockers E Roadblocks
. Cloud Requirement Technology v Impact * Criticality E Contribution z Roadblocks . @ Est. Effort ?

+ ® Security & User Authentication : Use of unsecured network protocols (HTTP, FTP) 2] C# G Low 147.31 person-day
(W) Security & User Authentication : Hardcoded URLs using HTTP protocal @ = G Low 154.94 person-day
[Execution Environment : Using file system @ c# @ Medium 21.66 person-day
(W) Persistent Files : Perform File Manipulation @ = @ Medium 4.75 person-day
Application Logs : Correct usage of Logging @ c# Low 0 NAA

Application Logs : Detect usage of LogdNet @ = @ Low +1.00 % 0 0.00 person-day

Application Lags : Detect usage of LogdNet @ VE/VE.Net @ Low +0.99 % 0 0.00 person-day
Application Settings Configuration : Using ConfigurationManager @ c# Low 0 WA

Insights are available at the application level to understand the specific Blockers that occur within

each application and estimated effort to remove them so that the modernization plan can be
NST further refined based on individual application characteristics.

Cloud Native Service Recommendations for

W roslyn

Plattorm =]

(@) Eligible Amazon Web Services Cloud services

© AWS Batch

Bl & Get started with AWS Batch

Specific cloud native
services on AWS,
Azure, Google Cloud,
Oracle Cloud, or IBM

Cloud are
recommended based
on each application’s

technical
characteristics.
:g o ?-
L] k] cs |
L] 7E3

Wall & Get started with Amazon 53

Cloud Maturity Recommendations

Applications to Refactor for PaaS (less effort):
Roslyn, Shopizer, Unicorn, Product Management, IMDB, Budget, MultiCloud, Mando, Starlord

Applications to Rearchitect for PaaS (medium effort): Tre clious meifve sdopiion

Hadoop recommendations are then

summarized to develop the overall
roadmap for the portfolio.

Applications to Rebuild for PaaS (most effort):
GCP-Client

Applications to Retire:

Cassandra, Groot

Top cloud native services to adopt on AWS:
AWS Batch, Amazon EC2, Amazon ECS, Amazon EKS, Amazon S3

CNST

Green Impact

Green Impact Section

This section of the report contains key insights generated by CAST Highlight on the Green Impact of
applications that should be improved and tracked over time including:

« Prioritized actions to take for applications to improve green impact

« Green Deficiencies in the code, estimated effort to remove them, and the required code changes

« Aview of the Green Impact score trends over time
« Summarized action plan for the application portfolio

Portfolio Advisor for Green

Rising Stars (1) -\\ . .
Quick Wins (3) ——— ..

I @ Green Impact Effort - 4=» P Greenimpact- @ E Green Deficiency Occurrences - | @

7 Role Models (8) 337.5

Reset zoom

833.3

. . e

, 5208

—— Long=Term Invest... E

o

]
3 4167

E

=

G

P 2
| @ Quick Wins (3) @ Rising Stars (1) @ Role Models (8) @ Long-Term Investments (2) | Y 325

®© o

1042
0.0 @ @) -
Hades shopizer Unicorn MultiCloud
-104.2
300 350 400 45.0 50.0 55.0 60.0 65.0 70.0 75.0 a0.0 as.0 90.0

1
Rising Stars

I'-°“S'T°"“ The Portfolio Advisor for Green
nvestments . . . ang
automatically identifies opportunities to

improve sustainability and Green Impact
of applications across your portfolio.

Green Deficiencies

@ Green Impact Effort

’ Green Deficiency Technology z Occurrences ? . Total Apps
Resource Economy : Prefer literal initialisation @ Java 806 8.40 person-day 9
Avoiding Failure : Avoid empty catch blocks @ Java 2171 45.23 person-day 9
Algorithmic Costs : Prefer comparison-to-0 in loop conditions @ Java 12824 133.58 person-day 9
Algorithmic Costs : Avoid instantiations inside loops @ Java 8828 183.92 person-day 9
Algorithmic Costs : Avoid String concatenation in loops @ Java 11644 242,58 person-day 9
Algorithmic Costs : Avaid calling a function in a condition loop @ Java 6231 389.44 person-day 9
Resource Economy : Avoid Programs not using explicitly OPEN and CLOSE for files or streams @ Java 381 7.94 person-day 8
Resource Economy : Use a virtualised environment where possible @ Java 1953 81.38 person-day 8
Algorithmic Costs ; Avoid nested loops @ Java 4036 252.25 person-day 8
Resource Economy : Avoid OPEN/CLOSE inside loops @ Java 541 22.54 person-day 5
Algorithmic Costs : Prefer comparison-to-0 in loop conditions @ c# 3173 33.05 person-day 4
Resource Economy : Use a virtualised environment where possible @ C# 911 37.96 person-day 4
Algorithmic Costs : Avoid instantiations inside loops @ C# 2900 60.42 person-day 4

The Green Deficiency patterns in the code that

contribute to excess resource utilization and energy
consumption are identified across the portfolio including
number of occurrences, effort to remediate, and the
CNAST specific applications where they occur.

Green Deficiencies Detail for Mando Application

® Mando

Avoid calling a function in a condition loop

As a loop condition wil

uated at each iteration, any function call it contains will be called at each time. Each time it is possible, prefer condition

expressions using only variables and literals.

84.3 97.7 70.8 1668 46.6 Reference

https:/ftechnologies. castsoftware. comirules?s=/00p%7Cqualityruless7C 1020006 ASCPEM-PRF-8 CWE-1050

Searched Code Pattern
+206% @ +640% @ —" +0.0% +0.0% a

loops syntaxes are :

A Green Impact &= Green Impact Survey 88 Green Impact Scan X Green Deficiency Occurrences (® Green Impact Effort :2:1: [';'i € o g

a do { ...} while (...)
search condition containing 2 function call, whose pattern is an identifier followed by an opening parenthesis
a @ Green I condition = (... <<function name>>(...) ...)
,’ Green Deficiency — E Contribution E Occurrences ?
o Algorithmic Costs : Avoid calling a function in a condition loop €@ — c# A-514% 39 2.44 person-day

o Algorithmic Costs : Avoid instantiations inside loops @ (=3 A-100% 13.79 person-day

(] Algorithmic Costs : Avoid nested loops @ c# A-800%

]

21.81 person-day
(] Algorithmic Costs : Avoid String concatenation in loops @ c# A-100% 2.56 person-day
[N Algorithmic Costs : Prefer comparison-to-0 in loop conditions @ c# A-400% 4,63 person-day
Q Avoiding Failure : Avoid empty catch blocks @ G A-132% 0.63 person-day
o Resource Economy : Avoid OPEN/CLOSE inside loops @ (=3 A-035% 0.17 person-day
Q Resource Economy : Avoid Programs not using explicitly OPEN and CLOSE for files or streams @ C# A-070% 0.08 person-day

[N Resource Economy : Avoid using 'System.gc’ and 'Runtime.gc’ @ c# A-070% 0.00 person-day

EocoocB B EBBAE

[N Resource Economy : Use a virtualised environment where possible @ c# A-057% 0.46 person-day

Insights are available at the application level to understand the specific Green

Deficiencies that occur within each application, estimated effort to remove them, and
CAST remediation advice so that applications can be made more sustainable.

Green Impact Trends

J Health Factors +* Code Size /# Maintenance @b CloudReady (%) Open Source @ Green Impact

- REICERNIpEwl = Green Impact Survey | 88 Green Impact Scan | B Green Deficiency Occurrences | @ Green Impact Effort Trends: 1 value -
100.0 % —
rostyn
90.0 % -8 shopizer
GCP-Client
Loki
B0.0 % =% Crogu
=% Hades
MultiCloud
700 % - Mando
-# Groot
Starlord
60.0% Quill
F -8 Unicorn
E Product Manage...
2 oo cassandra
- -» IMDB
§ - hadoop
3
Budget
400 % ucae
30.0 %
0.0 %
10.0 %
00%
31.Jan 1. Feb

Applications are continuously monitored to view
progress being made on green impact (and other
metrics) across all applications.

Green Impact Recommendations

Shopizer: Remove the top 10 Green Deficiencies, less than one week of estimated effort
Quill: Remove top 2 Green Deficiencies, less than two weeks of estimated effort
Mando: Remove top Green Deficiency, two weeks of estimated effort

Applications to address in the future:
Groot
Roslyn
Grogu

Review two “Role Model” applications to identify best practices to share across the team:
MultiCloud
Starlord

Specific recommendations on how to improve
Green Impact are summarized.

Why CAST Highlight?

CAST Highlight gives enterprise leaders rapid insights across entire portfolios. Automated
source code analysis with built-in surveys for business context. Portfolio views. Instant
drilldowns. Recommendations. Operational in a week. Across hundreds of applications.

« Automate Portfolio Governance + Accelerate Cloud Migration
 Manage Open Source Risk * Improve Green Impact

-

N

Software Health

Resiliency
Agility

\ Technical Debt

Cloud Maturity

Roadmaps
Blockers & Effort
Cloud Native Services

®

Software Composition
OSS Vulnerabilities
OSS IP / Licensing Risks
SBOM

Green Impact
Deficiencies
Remediation Advice
Trends

J

: z # T
BCG B Microsoft accenture snymeLlon E2=5E

Trusted By:

Yo

CNST

See everything, advance anything

Request demo

castsoftware.com

https://www.castsoftware.com/
https://www.castsoftware.com/get-demo-of-cast-software-intelligence?utm_page=https://www.castsoftware.com/highlight

Appendix

Data collection for CAST Highlight

Simple 3-step process — rapid to implement, easy to use, easy to scale and integrate

e ® .
g 3 ki P
= ey e - |
/ = £ S
B = - e
. Control Tower for Application Rationalization @ -
3 S w
T I
% bR
- 0% =LY
| | = g = R gin B, foie
R (el Ty
§ O WO ey
Software Resilency

ﬁ O Bitbucket

Step 1 Step 2 Step 3

Code reader analyzes source code Encrypted intelligence is uploaded to Instant visibility via dashboards, heat maps,
automatically from the repositories with secure cloud (27001-certified). No code charts, recommendations. API-based data
predefined frequency. leaves premises. integration.

CNST

Key Metrics & Methodology Definitions

Cloud Maturity

Software Resiliency

Software Agility

Software Elegance

Open Source Safety

Green Impact

Measure of software and organization
characteristics to speed PaaS migration

Measure the robustness and how bullet-proof
is the Software against production failure

Measure to indicate the easiness of a
development team to understand and
maintain an application

Measures the ability to deliver software value
with less code complexity

Measure risk associated with the use of 319-
party components that comply security,
license, and age requirements.

Measure programming practices and
engineering principles that make software
more environmentally-friendly.

Significant number of roadblocks found that
could slow down a Cloud migration

Reflects presence of code patterns that may
comprise vulnerability of the software

Reflects absence of embedded documentation
and code readability good practices

Indicates decreased quality in code, resulting
in higher defects that become costly to fix

Analysis of open-source and 39-party
components in use that could include security
vulnerabilities, risky licensing requirements, or
obsolete technology.

Identification of Green Deficiency patterns in
the code of applications that contribute to
excess resource utilization and energy
consumption.

Opportunity to reduce cost, increase
elasticity and embrace innovation

Customer Satisfaction
Customer Confidence / Loyalty
Opportunities & Revenue

Maintenance Cost
Transferability

Time to Market
Innovation

Reduce security risk, reduce legal
exposure, reduce operational risk

Support ESG requirements, make
software greener, more resilient, less
expensive, and more performant

	Slide 1: Open Source Risk Scorecard
	Slide 2: Challenge
	Slide 3: Scope
	Slide 4: Agenda
	Slide 5
	Slide 6: Application portfolio snapshot
	Slide 7: Application portfolio snapshot
	Slide 8
	Slide 9: Software Composition Analysis Section
	Slide 10: Software Composition Analysis Overview
	Slide 11: Security Vulnerabilities Overview
	Slide 12: Security Vulnerabilities Detail
	Slide 13: License Risk Overview
	Slide 14: License Risk Detail
	Slide 15: Software Composition Recommendations
	Slide 16
	Slide 17: Software Health section
	Slide 18: Software Resiliency vs Business Impact
	Slide 19: Software Resiliency for Loki Application
	Slide 20: Portfolio Advisor for Software Maintenance
	Slide 21: Software Maintenance Optimization
	Slide 22: Software Health | Recommendations
	Slide 23
	Slide 24: Cloud Maturity Section
	Slide 25: Portfolio Advisor for Cloud
	Slide 26: Portfolio Advisor for Cloud
	Slide 27: Top Blockers & Boosters
	Slide 28: Blocker Detail: Using Stateful Sessions
	Slide 29: Blocker Detail: Use of File System
	Slide 30: Blocker Detail: Perform File Manipulation
	Slide 31: Cloud Boosters & Blockers for Roslyn Application
	Slide 32: Cloud Native Service Recommendations for Roslyn Application
	Slide 33: Cloud Maturity Recommendations
	Slide 34
	Slide 35: Green Impact Section
	Slide 36: Portfolio Advisor for Green
	Slide 37: Green Deficiencies
	Slide 38: Green Deficiencies Detail for Mando Application
	Slide 39: Green Impact Trends
	Slide 40: Green Impact Recommendations
	Slide 41: Why CAST Highlight?
	Slide 42
	Slide 43
	Slide 44: Data collection for CAST Highlight
	Slide 45: Key Metrics & Methodology Definitions

